
RooMate
Requirements and Specification Document

2016-09-27, version 1.0
Project Abstract

For decades, apartment and household residents have struggled to efficiently and equally
distribute chores amongst themselves. Common recurring tasks like buying communal goods
(soap, toilet paper, etc.), organizing household meetings, or equally distributing chores could be
greatly simplified through the use of a mobile app. Our application, RooMate, will simplify the
daily complexities of having roommates.​ The app makes it easier to see the distribution of chore
labor amongst roommates. The app also makes communal expenses easier to split up and keep
track of. Communicating with one another will be simple, and events will be easier to organize.

Team Members
SeongJae Kim (skim387@wisc.edu)
Hunter Koeshall (hkoeshall@wisc.edu)
Aaron Levin (awlevin2@wisc.edu)
Corey Allen Pett (cpett@wisc.edu)
Ritvik Upadhyaya (rupadhyaya2@wisc.edu)
Zhanpeng Zeng (zzeng38@wisc.edu)

Document Revision History
Rev. 1.0: 2016-09-27: initial version

Customer

Our customer is any person that lives with roommates and needs a better system to organize
chores, pay communal bills, and communicate better with one another. The app is ideal for
college students, most of which are experiencing communal living for the first time, but the app
is also applicable to anyone who lives with roommates. Some features of the app (like organizing
chores and bulletin boards) can even be used by families with young children. Users will need
smartphones with internet connection to use the app/service, and although iOS will be the first
platform to support the app, an Android version will later be released after the proof of concept is
demonstrated.

Our primary customer is Tommy Wolfe, a current UW-Madison student who lived communally
for an entire year with notably unfair distribution of chores amongst roommates. Tommy and his
roommates have agreed to test the app and provide feedback. All of the people in their household
are not particularly tech savvy, so their testing will provide strong evidence for how
simple/seamless the app is to use. Several other households have agreed to help test the app and

provide feedback, but the perpetual issues in Tommy’s household will make them a good
indicator of the app’s effectiveness.

Competitive Landscape

Our application is trying to simplify the complex management of a life shared with
roommates. There are currently applications available on iOS App Store that do similar things
like splitting up chores and bills, or sharing a communal shopping list or message board.
However, after some research, we found several application only have a subset of features that
we try to implement in our project, and others are not designed for the specific purpose of
managing a shared household among roommates. One application has a similar user interface as
our project, but we noticed some apparent weaknesses within this application. In addition to
these weaknesses we also feel the application is a bit outdated. These competitor applications
will hopefully be useful in getting some real world user feedback of some of our desired features.

1. HomeSlice
a. Pro​:

i. Integrates several features for managing life sharing with roommates.
ii. Whiteboard provides a space for communication among roommates.

iii. Has a shared shopping list for common household supplies or groceries,
and the ability to keep track of shared bills.

iv. Simple way to mark household supplies “in stock” or “out of stock”.
v. Ability to create chores schedule, and know who has done their chores.

vi. Keeps track of all shared bills and payments among roommates.
vii. Synchronized among devices.

b. Con​:
i. Not compatible with iOS and most newer Android devices.
ii. Difficult to use.

iii. Doesn’t have push notifications.
iv. Doesn’t allow users to mark completed tasks.
v. Has several bugs and needs improvement.

vi. Doesn’t have statistics about how much work each roommates has done.
vii. Doesn’t have Venmo/PayPal integration.

2. Chorma for Chores
a. Pro​:

i. Uses rewards to motivate users into doing chores.
ii. Simple ways to add, view, modify and delete chores.

iii. Synchronized among devices.
iv. Ability to view the history of who has done what chores.
v. Can create unclaimed chores for others to do.

vi. Schedule repeated chores and rotating chore schedules.
b. Con​:

i. Cannot easily reschedule the chores if completed after due date.
ii. Difficult to edit existing chores.

iii. App is only for chore management.
3. Splitwise

a. Pro​:
i. Easy to use.
ii. Keeps track of shared bills and history.

iii. Sums up several small payments to larger transactions.
iv. Categorizes the bills.
v. Notifications for bills due and bill updates.

vi. Integrates Paypal and Venmo.
b. Con​:

i. Has only a bill splitting function, which is good since it has larger user
group, but bad since only has limited features for managing life on a
shared household.

4. Our Groceries Shopping List
a. Pro​:

i. Keeps track of a shared shopping list, and can create several different lists
for different stores.

ii. Categorizes different items for better view and management.
iii. Word recommender when entering the name of an item.
iv. Can add a photo or barcode when adding an item so that the roommates

can get the right item.
v. Has a lot of customized settings for enhanced user experience.

vi. Implements on different platforms.
b. Con​:

i. Has only limited functions for managing shared household items.
ii. Too many customized settings, which can make it difficult to use.

iii. Users need a shared email to synchronize among devices.
5. OurHome

a. Pro​:
i. Can assign and schedule chores to specific users within the group.
ii. Ability to add weighted point values to each chore.

iii. Can view the chores history to see how much work each person has done
for each type of chore.

iv. Has a shared calendar to post events.
v. Has a shared groceries list.

b. Con​:
i. User interface was designed for family use and motivating kids to do

chores, not for roommates.
ii. Doesn’t have a feature to keep track of groceries bills.

User Requirements

The mobile application provides an all in one roommate experience to satisfy various
household needs. The main idea to the application is to bring chores, groceries, payments, and a
way to notify all the roommates about different activities going on in the house at one place. The
features of the mobile application are listed below in order from when the user opens the app and
touches each tab in the tab bar presented.

1. User opens the application

A. The application loads and displays our RooMate launch screen. After the
presentation of the launch screen, our login screen is displayed. The user will
need a Facebook account, which then the user will have to click the FB button to
login.

I. If the user opened the application for the first time - The user is presented
with the onboarding process where if the user opens a tab for the first
time, a small animated run through of the how that specific tab works is
displayed.

II. Else - the first tab that is launched is the bulletin board tab with no
additional information.

2. Bulletin board tab viewed
A. This tab will show post-it notes that any roommate can create to be able to notify

other roommates about miscellaneous things such as memes, reminders, and
random fun notes.

B. Another feature on the billboard is the recent activity view. This will show recent
completed activities such as completed payments or completed chores. The user
can swipe or tap the recent activity view to access the past 30 recent events.

3. Chore tab viewed

A. This tab will show the list of chores that need to be completed.
B. There will be an add chore bar button item that will let you add a chore.

a. The user can add a predetermined chore to the chore list that we as
developers will think of such as taking of the trash, cleaning dishes, etc.
(the essentials)

b. The user can also add a custom chore that will be added to the
predetermined chore list so the user does not have to create the same chore
again.

C. Another bar button item will be used on the left side of the screen for statistics on
chore completion

a. At the top of the statistics view, the user will be presented at the top of the
view with personal statistics on what the current user has completed. Such
as 3x for the cleaning dishes and 1x for taking out the trash.

b. Below the personal statistics view, there will be a bar graph that shows
how each roommate stacks up in the amount of chores completed. So that
everybody in the house knows is contributing a fair amount of work.

4. Groceries tab viewed

A. This tab will show two segmented tabs at the top of the view and the first segment
is the user’s personal grocery list. This will allow every roommate in the
household to create a personal grocery list.

a. The user can add a grocery item and set whether it will be in aggregate list
can add additional notes to the item such as get “so and so brand.”

B. From every roommate’s personal grocery list, there will be another segment
called Communal list. This allow every roommate to add communal items (such
as toilet paper) to a shared list.

C. There will be a aggregate segment (name needs to be simpler for the dummies
such “Household”). This will show every roommates grocery list and communal
list concatenated into one table view. If two people used the word eggs, then we
will show in the concatenated list that the household needs two items of eggs.

D. The user who is going to buy groceries will press a button that means the user is
going grocery shopping for the household and that will delete a subset of the
grocery list that the user already bought and split the costs among everybody’s
personal list. This will also send a push notification to everybody.

5. Finance tab viewed

A. This tab will also contain a segmented control. The first segment will contain the
user’s debt. The total of how much the user owes, with a list of everybody who
the users owes with the individual debts listed.

B. The second segment will provide the user with everybody who owes the user
money. There will be a remind an individual user about a payment button, which
will send a push notification to that specific user. There will also be a “REMIND
ALL” button to send a push notification to everybody. We will handle spam
accordingly.

6. Settings tab viewed

A. Customizable UI, such as changing background of the bulletin board.
B. Change when automatic notifications are sent
C. Log in using facebook account
D. Create a group if the user is not in a group
E. Invite other roommates to your household
F. Leave a group

7. Notifications

A. If there are payments that are due at end of the month, a notification is sent
automatically to everybody who owes money.

B. Each user that isn’t spamming reminders, will be able to send a friendly reminder
to another user who owes money.

C. When a user clicks the button that states that the user is going to buy groceries,
this will send a notification to every roommate to let them know that they are
going shopping. This will help other roommates think if they need to change their
grocery list such as removing or adding an item.

Use Cases

Name Open the app - Log in

Actor User

Trigger Open the app when no account is logged in

Events -user presses “LOGIN” to log in with facebook account
-app verifies account via Facebook
-user is directed to the Bulletin Board page
-user presses “EXIT” to close app

Exit Condition User presses “LOGIN” or “EXIT”

Post Condition User gets access to his/her own stored data and setting.

Acceptance Test User should be able to load personal settings after login.

Name Settings - Create a group

Actor User

Trigger Press “Create a group” in settings view

Events -user presses “Create a group”
-user is directed to a view for creating a group
-user fills in the group’s information
-user submits the request by pressing “Create”

Exit Condition User presses “Create” or “Cancel”

Post Condition A group is created and user is added in the group. User is directed to
setting view. The “Create a group” button changes to “Leave my
group.”

Acceptance Test After creating a group, the user should be able to see the group’s
information in the setting view.

Name Settings - Invite another user to join the group

Actor User

Trigger Press “Add roommate” in the settings view

Events -user presses “add roommate”
-user is directed to a view for searching people
-user fills in the account or the name of the person they want to add
-a list of possible people is displayed
-user select one person and presses “Invite”
-a notification is sent to the person

Exit Condition Press “Invite” or “Cancel”

Post Condition User is directed back to the settings view.
An error message is displayed if the invited person is already in a
group.

Acceptance Test The invited user will receive a request to join this specific group.
The user will see an error message is the invited person is already in a
group.

Name Setting - Leave the group

Actor User

Trigger Press “Leave the group”

Events -user presses the “Leave this group” button
-the “Leave this group” button changes to “Confirm”
-user presses the “Confirm” button
-a notification is sent to all members within the group

Exit Condition Press “Confirm” or press anywhere else on the screen to cancel

Post Condition User will no longer belong to this group. The “Leave this group”
button then change to “Create a group”.

Acceptance Test After this action, user should no longer see the group information, and
all group functions within the app will be disabled.

Name Setting - Accept an invitation

Actor User

Trigger A request is sent to the user

Events -user presses “Accept” or “Decline”

Exit Condition Press “Accept” or “Decline”

Post Condition User is admitted into the group if the invite is accepted. The “Create a
group” button changes to “Leave this group”.
No change if the user presses “decline”.

Acceptance Test After this action, the user should be able to see the group information,
and all group app functions are enabled.

Name Chores - view chores statistics

Actor User

Trigger Press “Group statistics” button in chore view

Events -user presses “Group statistics”
-user is directed to the statistics view
-user presses “Return” and is directed to the chores view

Exit Condition Press “Return”

Post Condition User is directed to the chores view

Acceptance Test User can go to statistics view by pressing “Group statistics”.

User can return to the chores view by pressing “Return”.

Name Statistics view - view the completion history

Actor User

Trigger Press “History” button within the statistics view

Events -user presses the “History” button
-user is directed to a view for chore history
-user presses “Return”

Exit Condition Press “Return”

Post Condition User is directed to the statistics view.

Acceptance Test User can navigate to the history view by pressing “History”.
User can return to stats view by pressing “Return”.

Name Chores - add a chore

Actor User

Trigger Press “Add” button within chores view

Events -user presses “Add” button
-user is directed to a view for adding chore
-user selects preexisting chore or fills in chore information and sets
schedule (optional)
-user presses “Add chore”

Exit Condition Press “Add chore” or “Cancel”

Post Condition A new chore is added to the chores list, and the user is directed to the
chores view.

Acceptance Test User is notified that a chore has been added to the list.

Name Chores - delete a chore

Actor User

Trigger User swipes left on a chore within the chores view

Events -user swipes left on a chore
-a “Remove” button is pulled out
-user presses “Remove” and the button change to “Confirm”
-user presses “Confirm”
-the chore is removed from the chores list

Exit Condition Press “Confirm” or press anywhere else on screen to cancel

Post Condition The chore is removed from the chores list.

Acceptance Test After removal, user is notified that the chore has been removed.

Name Chores - complete a chore

Actor User

Trigger Press a chore in chores view

Events -user presses a chore
-a small window pops up
-user fills in information on chore they completed and presses
“Confirm”
-a notification is sent to other roommates.

Exit Condition Press “Confirm” or press anywhere else on screen to cancel

Post Condition The chore is removed from the chores list, added to the history view,
and the statistics page is updated.

Acceptance Test After this action, a notification is sent to other users within the group
and the users should not see the chore in the chores list.

Name Groceries - add a Communal item

Actor User

Trigger Press “Add item” in communal item view

Events -user presses “Add item”
-user selects a preexisting item or fills in new item information
-user presses “Add” and the item is added to the list

Exit Condition Press “Add” or “Cancel”

Post Condition User is directed to communal item list and item is added.

Acceptance Test Users can see the newly added item within the communal item list.

Name Groceries - delete a Communal item

Actor User

Trigger User swipes left on an item in the communal item view

Events -user swipes left an item
-a “Remove” button is pulled out
-user presses “Remove” and the button change to “Confirm”
-user presses “Confirm”
-the item is removed from the communal item list

Exit Condition Press “Confirm” or press anywhere else on screen to cancel

Post Condition Item is removed from communal item list.

Acceptance Test After deleting, users will not see this item in the list.

Name Groceries - add a personal item

Actor User

Trigger Press “Add items” in the personal item view

Events -user presses “Add item”
-user selects a preexisting item or fills in new item information
-user selects whether show this item in aggregate list.
-user presses “Add” and the item is added to their personal list.

Exit Condition Press “Add” or “Cancel”

Post Condition User is directed to their personal item list and item is added.

Acceptance Test User can see the newly added item in their personal item list.

Name Groceries - delete a personal item

Actor User

Trigger User swipes left on an item in the personal item view

Events -user swipes left on an item

-a “Remove” button is pulled out
-user presses “Remove” and button changes to “Confirm”
-user presses “Confirm”
-the item is removed from their personal item list

Exit Condition Press “Confirm” or press anywhere else on screen to cancel

Post Condition Item is removed from the user’s personal item list.

Acceptance Test After deleting, the user will not see the item in their personal item list.

Name Groceries - edit a personal item

Actor User

Trigger Press “edit” in personal item view

Events -user presses edit
-user can edit item information
-user presses “Add”

Exit Condition Press “Add” or “Cancel”

Post Condition User is directed to personal item list and the item is edited.

Acceptance Test User should see the updated item.

Name Groceries - complete a shopping list

Actor User

Trigger Press the “Complete a list” button in the aggregate list view

Events -user presses the “Complete a list” button
-user can select a list of items within the aggregate list
-user inputs the total price of shopping trip
-user imports a photo of their receipt
-user presses “Complete”
-notification is sent to other users in the group
-cost is split to each roommate’s balance

Exit Condition Press “Complete” or “Cancel”

Post Condition A subset of aggregate items is removed, this record is added to
shopping list history.

Acceptance Test After completing a shopping list, users will not see the items he or she
selected, and item records are added to shopping history.
A notification is sent to users within the group.

Name Groceries - edit a completed shopping list

Actor User

Trigger Press “Edit” button in the view

Events - user presses “Edit”
- user can now delete, add, or revise item
- user presses “Done”

Exit Condition Press “Done” or “Cancel”

Post Condition The list is revised based on the user’s actions.

Acceptance Test After completing the revision of the shopping list, the list should be
updated, retain the updated information, and notify each user within
the group of the revision.

Name Finance - add a shared bill

Actor User

Trigger Press “Add” button in the view

Events - user presses “Add” button
- user can add roommate(s) to the bill
- user can add a description for the bill
- user can add an image of the bill (gas, electric, etc.)
- user presses “Done”

Exit Condition Press “Cancel” or “Done” button

Post Condition A bill is presented to each user within the group that was selected.
Their finance tabs are updated.

Acceptance Test After completing a shared bill, every user within the group who was
selected will have an updated finance tab.

Name Finance - pay other roommates

Actor User

Trigger Press “Pay” button on the bill

Events - user presses “Pay”
- Venmo payment method initiates (Venmo API)
- user is presented with a touch ID for authentication or pin number
- user can cancel or proceed with confirming payment

Exit Condition Press “Cancel” or confirm payment

Post Condition The user is presented with a UIAlertView of a checkmark on
completion of payment. The other user will receive a notification that
the user paid him/her.

Acceptance Test The user who received a payment will receive a notification and their
Venmo account will be credited accordingly.

Name Finance - view bill history

Actor User

Trigger User presses the “History” within the finance tab

Events - user presses the “History” button
- user is shown a list view of every past bill with the total amounts of
those transactions

Exit Condition User presses “Done”

Post Condition User is returned to the finance view.

Acceptance Test The user was able to view previous bills from within the group.

Name Finance - remind individual roommate to pay

Actor User

Trigger User presses on the finance tab and clicks the “Remind” button

Events - user clicks on “Remind” button

Exit Condition N/A

Post Condition The user who owes money will be sent a push notification.

Acceptance Test The user who owes money receives the push notification.

Name Finance - remind all roommates to pay

Actor User

Trigger User presses the “Remind all” button

Events - user is in the finance tab and presses the “Remind all” button at the
top of the view

Exit Condition N/A

Post Condition Every user who owes money to the current user will be notified with a
push notification about the amount they owe.

Acceptance Test Every other user will receive a push notification with a total amount
owed to the reminding user.

Name Bulletin board - add a note

Actor User

Trigger Press “Add note” in bulletin board view

Events -user presses “Add note”
-user is directed to a view for adding a new note
-user fills in note and has the option to import a photo
-user sets a timer to delete the note (or default timer)
-user presses “Add” button

Exit Condition Press “Add” or “Cancel”

Post Condition A new note is added in bulletin board and the user is directed to the
bulletin board view.

Acceptance Test After a adding note, users should see the new note in bulletin board.
After a certain time, the note should be deleted automatically.

Name Bulletin board - delete a note

Actor User

Trigger “3D touch” or “Long Press”

Events - user is in the bulletin board view
- user holds the post-it note for 3 seconds
- post note jiggles with an x button on the note
- user can press the x to delete the note

Exit Condition User clicks the “Done” button.

Post Condition If the user clicks the x button, the note is removed from the board.

Acceptance Test Users will no longer see the deleted note.

Name Bulletin board - view recent activities

Actor User

Trigger User swipes up or taps on the recent activity view

Events - user taps the recent activity view
- recent activity view slides upward showing the last 30 events

Exit Condition User presses “Done” or swipes downward to close the view

Post Condition N/A

Acceptance Test The activity view should show the past 30 events and should be able to
slide up and down with ease.

User Interface Requirements

Security Requirements
There are multiple points of concern from the safety point of view. We need to have

proper checks on both local and networked features. All the payment will be handled via venmo
API, but before any outgoing transaction we will perform a TouchID match for the phone’s
owner. We also will implement a strong auth token check on the backend. Any call that fails due
to auth error will result in the user being logged out to prevent malicious activity. The user will
also be notified of what happened before we force the log out.

The users will also need to log-in using Facebook, but we will not save any user
information beside the names and the auth tokens. Most other parts of the app will be handled by
verified third party like Facebook for login, Firebase for secure calls to and from the device, and
Venmo for payments. These services have great firewalls in place to prevent any security lapse.
We will also be writing Unit Tests to make sure all the safety checks work as desired!

System Requirements
Front End:

● Client Requirements:
○ iPhone 6 or above.
○ iOS 9 or above.
○ WiFi connectivity to access features.

● Technology Requirements
○ Swift 2 or 3
○ Objective - C
○ Xcode 7.3 or above

Justification:

Setting the baseline device at iPhone 6, we want to focus our time and energy to make a
fluid, and consistent device across the latest phones that Apple supports. iOS 9 was one of the
fastest adopted OS version for iPhones, and has a lot of new API features that are not backwards
compatible (stack views, passkit, etc.). Hence we decided on keeping the target iOS version at 9,
which works very well with the iPhone 6 and 6+ screen sizes. Since Swift 3 is still fresh and has
a few reported stability issues, we will use Swift 2 for the most part. We will also be using
Objective-C in moderation, because of the availability of a lot of 3rd party frameworks to
implement networking (AFNetworking) and CoreData. Wifi is essential to use the app, because
the app will provide a platform to communicate with your roommates and everything will be
synced with firebase.

Back End:

● Technology

○ Firebase
○ NodeJS

Justification:

Firebase is a real-time backend hosting service. It is necessary for our app to reflect
changes in real-time, and firebase provides it with the least amount of setup. Firebase also makes
it really easy for us to keep track of logins, and auth tokens. We will implement custom wrappers
on firebase for the backend calls using NodeJS to package data using our object requirements,
and add an extra layer of authentication to all calls.

Version Control:

● Github for code management (Private Repository)
○ Feature Branching
○ Formal format to assign/accept tickets and reporting issues.

● Google Drive for version specification and release notes.

Specification:

